

2020 ACC Workshop

Transmission and Distribution Avoided Capacity Costs 5/6/2020

Brian Horii Robbie Shaw

Agenda

- + 2019 vs. 2020 T&D Value Comparison
- + Transmission Value Updates and Methodology
- + Distribution Value Updates and Methodology
- + PCAFs and Day mapping

- + Please use the Q&A feature to ask questions.
- + Questions will be answered during the allotted discussion periods after each section.
- + If you have a longer question you would prefer to use your microphone for, you can request to be unmuted by clicking on the button with the phone icon:

 Once you are given speaking permissions, you will need to connect your audio by clicking on the phone icon on the main screen:

Energy+Environmental Economics

Comparison between 2019 and 2020 T&D Values

^{*} PG&E numbers reflect Climate Zone 11

- Potential cost impacts on utility transmission investments from changes in peak loadings on the utility systems
- + Does not address whether particular technology, measure, or installation could provide transmission avoided cost savings.
- + Simple system averages for each IOU
- + Transmission capacity in the prior ACC
 - PG&E GRC Filing: \$7.54/kW-yr (\$2019, without losses)
 - SCE: \$0
 - SDG&E: \$0

Transmission Capacity (\$/kW-yr) (2020)

PG&E	SCE	SDG&E
\$11.75	\$28.82	\$14.44

PG&E Transmission

Discounted Total Investment Method (DTIM)

- Present value of peak demand-driven transmission investments divided by the present value of the peak demand growth.
- This unit cost is then annualized using a marginal cost factor that consists of the RECC with adjustments for other costs, such as A&G and O&M
- DTIM has a long history of use for marginal cost estimation in California
- + See section 9.1.1 for more detail

 $TCap = \frac{PV(Demand - Driven Invests)}{PV(Load Growth)} * Annual MC Factor$

Table 3: Marginal Transmission Capacity Cost (2021 \$) at 5-Year Time Horizon

[A]		[B]
PV of Investment (\$)	[1]	\$206,142,713
PV of Load Growth (MW) PV of Load Growth (kW)	[2] [3]	1,793 1,793,203
Marginal Investment (\$/MW) Marginal Investment (\$/kW)	[4] [5]	\$114,958 \$115
Annual MC Factor	[6]	10.46%
Marginal Transmission Capacity Cost (\$/MW-Yr)	[7]	\$12,022
Marginal Transmission Capacity Cost (\$/kW-Yr)	[8]	\$12.02

SDG&E

+ DTIM method

- + SDG&E load forecast could not be used (was negative growth)
 - Replaced with IEPR without DER forecast
- + Analysis used 2021-2024

Discount rate7.14% Dec 2020 after-tax WACCInflation2.35%Real Discount Rate4.68%

		IEPR without DER based forecas				
	SDG&E Capital	IEPR without	Annual Peak			
	Expenditures	DER Peak Load	Demand Growth			
Year	(\$M)	(MW)	(MW)			
		4,571				
2020	46.28	4,540	(31)			
2021	9.78	4,579	38			
2022	5.82	4,636	58			
2023	4.96	4,695	58			
2024	3.44	4,749	54			
2025	0	4,800	50			
2026	0	4,845	45			
2027	0	4,892	47			
2028	0	4,938	46			
NPV(2021-2024)	\$21.85		185.63			

+ See section 9.1.3 for more detail

PV of Investment (\$M)	[1]	\$21.85
PV of Load Growth (MW) PV of Load Growth (kW)	[2] [3]	186 185,629
Marginal Investment (\$/MW) Marginal Investment (\$/kW)	[4] [5]	\$117,706 \$117.71
Annual MC Factor	[6]	12.27%
Marginal Transmission Capacity Cost (\$/kW-Yr)	[8]	\$14.44

SCE Transmission Avoided Costs

+ Combination of two methods

- DTIM for system-driven projects
 - Big Creek and Sylmar
- LNBA for local-driven project, Alberhill

SCE Transmission Avoided Capacity Costs

	Marginal Cost (\$/kW-yr)
System-wide projects	\$5.07 / kW-yr
Alberhill project averaged over SCE system	\$16.75 / kW-yr
Transmission O&M	\$ 6.70 / kW-yr
Total	\$28.52 / kW-yr

+ DTIM

- SCE load forecast showed negative growth
- Replaced with median peak load growth from IEPR without DER forecast
- DTIM covers five year period (2020-2024)
- SCE MC Factor = 10.96%
 - Does not include O&M
- DTIM = \$17.68M/382.34MW * 1000 * 10.96% = \$5.07/kW-yr

SCE Costs and Loads used for DTIM

	Project Cost (\$M)			SCE Fo	recast	IEPR without DER based forecast		
					Peak			
				Peak	Demand	IEPR without	Annual Peak	Median
	Big	Pardee		Demand	Growth	DER Peak Load	Demand Growth	Growth
Year	Creek	Sylmar	Total	(MW)	(MW)	(MW)	(MW)	(2020-2028)
				23825		25,137		
2020	5	0	5	23744	-81	24,970	(166)	91
2021	0	0	0	23806	62	24,919	(51)	91
2022	0	6	6	23795	-11	24,871	(48)	91
2023	0	10	10	23805	10	25,017	145	91
2024	0	0	0	23743	-62	25,093	76	91
2025	0	0	0	23671	-72	25,184	91	91
2026	0	0	0	23544	-127	25,295	112	91
2027	0	0	0	23460	-84	25,462	167	91
2028	0	0	0	23311	-149	25,650	188	91
NPV (20)20 - 2024)		\$17.68		(68.90)			382.34

Note:

IEPR Source:https://efiling.energy.ca.gov/Lists/DocketLog.aspx?docketnumber=19-IEPR-03Real Discount Rate Used:5.99%

- + LNBA method developed in the DRP proceeding to evaluate individual projects
- Alberhill is a high cost project driven by 7MW/yr of load growth
- + LNBA applied assuming a one-year deferral due to a 7MW reduction in area peak net loads.
- + The deferral value is then spread across the entire SCE service territory based on the Alberhill area's share of total SCE peak load.
- + System average marginal cost = \$17.05/kW-yr

1	Discount Rate	8.46%
2	Inflation Rate	2.33%
3	Real Discount Rate	5.99% (1+[1])/(1+[2]) - 1
4	Planning Horizon (yrs)	10
5	RECC	12.81% ([1]-[2])/(1+[1])*((1+[1])^[3]/((1+[1])^[3]-(1+[2])^[3]))

			Peak				
			Demand		Deferral		
		Project	Growth	1 Yr Deferral	Value		
	Year	Cost (\$M)	(MW)	Value (\$M)	(\$/kW)		
6	2020	50	7	2.83	403.70		
7	2021	1	7	0.06	8.07		
8	2022	1	7	0.06	8.07		
9	2023	9	7	0.51	72.67		
10	2024	69	7	3.90	557.11		
11	2025	85	7	4.80	686.30		
12	2026		7	0.00	0.00		
13	2027		7	0.00	0.00		
14	2028		7	0.00	0.00		
15	NPV using F	Real Discou	int Rate	12.15	1735.93		
16	RECC (From	Above) [5]			0.13	
17	Present Val	ue Revenu	e Require	ment Factor (E	D-SCE-001)	1.549	
18	LNBA Value	(\$/kW-yr)	[15] * [16]	* [17]			\$344.63
19							
20	A&G (1.1%)					1.10%	\$3.79
21	General Plant (6.9%)						\$23.78
22	Franchise Fees (1.1%% of all items above)						\$4.17
23	Plus O&M (\$/kW-yr from ED-SCE-001)						\$6.70
24	Total Project Marginal Cost (\$/kW-yr)						\$383.06
25	25 Percent of system load						
26	Project Ma	ginal Cost	spread acr	oss the system	ı		\$17.05

Other Transmission Capacity Cost Info

+ Allocation Factors

- 2019 ACC used the distribution allocation factors for PG&E transmission
- 2010 ACC updated to use generation allocation factors

Annual Transmission Escalation Factors

PG&E	SCE	SDG&E
2.34%	2.33%	2.06%

Transmission Capacity Loss Factors

PG&E	SCE	SDG&E
1.083	1.054	1.071

+ Three parts to the distribution capacity avoided costs

- GNA/DRP for the near term 2020 2024
- GRC for 2027 and beyond
- Linear transition for 2025-2026

			PG&E							SCE	SDG&E		
	Climate Zone:	1	2	3A	3B	4	5	11	12	13	16	All	All
2020	Near Term	\$14.85	\$14.85	\$14.85	\$14.85	\$14.85	\$14.85	\$14.85	\$14.85	\$14.85	\$14.85	\$29.81	\$3.73
2021	Near Term	\$15.22	\$15.22	\$15.22	\$15.22	\$15.22	\$15.22	\$15.22	\$15.22	\$15.22	\$15.22	\$30.51	\$3.81
2022	Near Term	\$15.60	\$15.60	\$15.60	\$15.60	\$15.60	\$15.60	\$15.60	\$15.60	\$15.60	\$15.60	\$31.22	\$3.88
2023	Near Term	\$15.99	\$15.99	\$15.99	\$15.99	\$15.99	\$15.99	\$15.99	\$15.99	\$15.99	\$15.99	\$31.94	\$3.96
2024	Near Term	\$16.39	\$16.39	\$16.39	\$16.39	\$16.39	\$16.39	\$16.39	\$16.39	\$16.39	\$16.39	\$32.69	\$4.04
2025	Transition	\$43.69	\$42.85	\$25.38	\$17.42	\$31.84	\$35.99	\$26.81	\$22.66	\$30.00	\$34.67	\$90.65	\$44.15
2026	Transition	\$70.99	\$69.31	\$34.37	\$18.45	\$47.29	\$55.59	\$37.23	\$28.93	\$43.60	\$52.95	\$148.61	\$84.26
2027	Long Term	\$98.29	\$95.77	\$43.36	\$19.48	\$62.74	\$75.18	\$47.65	\$35.20	\$57.21	\$71.24	\$206.57	\$124.36
2028	Long Term	\$100.75	\$98.16	\$44.44	\$19.97	\$64.30	\$77.06	\$48.84	\$36.08	\$58.64	\$73.02	\$211.39	\$126.85

+ Based on the Energy Division White Paper

- Calculate the counterfactual forecast
- Identify counterfactual capacity projects
 - Remove low cost/no cost solutions
- Calculate the average marginal cost of remaining counterfactual projects
- Calculate system level avoided costs based on benefits from DER in project areas. but spread over all DER

Near-Term Distribution Marginal Capacity Costs

	PG&E	SCE	SDG&E		
Circuits only		\$12.24			
B-Bank Substations		\$12.30			
A-Bank Substations	\$3.07				
Subtransmission	\$0.86				
Total Distribution Capacity (\$/kW-yr)	\$14.49 (\$2019)	\$28.47 (\$2018)	\$3.66 (\$2019)		

Near Term Distribution Calculations

+ [10] Unit cost

[11] "Deferrable capital" is Unit Cost * Counterfactual overloads

 Overloads are reduced by estimated low cost / no cost projects [4]

+ [13] Deferral value per kW of DER is Line 11 divided by the total DER 5 –yr forecast

+ Remainder applies RECC and adders

			SCE-Substations			
Line	Number of Overloads	PG&E	(B-Bank)	SCE-Circuits	SDG&E	Notes:
1	Actual Overloads	224	35	226	11	[1]
2	Counterfactual Overloads	271	50	349	25	[2]
3	Number of Proposed Projects	180	N/A	N/A	10	[3]
4	Percentage of Overloads addressed by Load Transfers	20%	20%	20%	9%	[4] = 100% - ([3]/[1])

	Overload Capacity					
5	Actual Overloads (kW)	289,880	269,140	634,702	10,039	[5]
6	Counterfactual Overloads (kW)	349,018	286,660	643,360	25,320	[6]
7	Deferrable Counterfactual Overloads (kW)	280,461	229,328	514,688	23,018	[7] = [6] x (100% - [4])

	Project & Planned Investment Costs					
8	Total Cost of Planned Investments in DDOR Filing (\$)	\$390,416,858	\$350,016,877	\$288,412,287	\$17,800,000	[8]
9	Capacity Deficiency that Planned Investments Mitigate (kW)	323,844	269,140	634,702	17,178	[9]
10	Unit Cost of Deferred Distribution Upgrades (\$/kW)	\$1,205.57	\$1,300.50	\$454.41	\$1,036.21	[10]* = [8] / [9]

	System Level Avoided Distribution Costs					
11	Deferrable Capital Investment	\$338,114,662	\$298,241,326	\$233,877,317	\$23,851,370	[11] = [10] x [7]
12	5 Year Total forecasted DER (kW)	2,285,003	2,911,430	3,113,110	625,460	[12]
13	Distribution Deferral Value (\$/kW)	\$147.97	\$102.44	\$75.13	\$38.13	[13] = [11] / [12]
14	IOU Specific RECC	9.79%	11.49%	11.45%	7.65%	[14]
15	Capacity Deferral Value (\$/kW of DER installed-yr)	\$14.49	\$11.77	\$8.60	\$2.92	[15] = [13] * [14]

	O&M Distribution Costs					
16	O&M Deferral Value (\$/kW-yr)	\$0.00	\$6.74	\$21.98	\$20.26	[16]
17	O&M Deferral Value (\$/kW of DER installed -yr)	\$0.00	\$0.53	\$3.63	\$0.75	[17] = [16] * [7] / [12]
18	Unspecified Marginal Cost (\$/kW of DER installed-yr)	\$14.49	\$12.30	\$12.24	\$3.66	[18] = [15] + [17]

+ SCE's GNA data did not allow direct derivation

- Developed a proxy based on distribution of deficiencies using 20% percentile cutoff
 - Comparing the actual (blue) and the counterfactual (orange) distributions shows the counterfactual having a much higher percentage of projects in the lowest two deficiency levels
 - Removing the lowest 20% of deficiency projects (gray line) brings the distribution closer to the actual distribution.

Actual Counterfactual ——Adjusted Counterfactual

- + SCE circuit and substation marginal costs are based on the White Paper method.
- + Subtransmission and A-Banks do not fit well with that paradigm because of the contingency-driven nature of such projects.
- + To address this gap, we include a fraction of SCE's longterm GRC-based subtransmission and A-bank marginal capacity costs in the near-term costs.
- + The fraction is the ratio of SCE Substation B-Bank counterfactual overloads to total DER reduction forecast over the five-year planning horizon (2019-2023).

Line		SCE-Substations (A-Bank)	SCE Subtransmission	Notes
[1]	Distribution Deferral Value (\$/kW-yr)	\$ 31.17	\$ 8.77	From SCE GRC
[2]	Deferrable Counterfactual Overloads (kW)*	286,660	286,660	* Using SCE Substation B-Bank Values
[3]	5 Year Total forecasted DER (kW)	2,911,430	2,911,430	* Using SCE Substation B-Bank Value
[4]	Distribution Deferral Value (\$/kW of DER - yr)	\$ 3.07	\$ 0.86	[4] = [1] * [2] / [3]

Long Term Distribution Capacity Costs

+ Based on the GRC Hierarchy

- PG&E 2017 GRC Phase II
- SCE 2018 GRC Phase II
- SDG&E 2019 GRC Phase II

+ Varies by climate zone

- + Total of Primary and Secondary marginal costs
- Division-level costs converted to wtd average Climate zone costs

J	K
	Wtd Avg
	Capacity Cost
	\$/PCAF-kW-yr
Climate	(Col I wtd by
Zone	Col F)
1	\$76.79
2	\$74.81
ЗA	\$33.87
3B	\$15.22
4	\$49.01
5	\$58.73
11	\$37.22
12	\$27.50
13	\$44.69
16	\$55.65

A	В	L	D	E	F	G	H	I
			Duitana a					Total
			Primary			IOTAL FLI		Distribution
			Capacity	Secondary	Loads	Loads	Secondary	Capacity
Line		Climate	\$/PCAF-kW-yr	\$/FLT-kW-yr	(PCAF kW)	(FLT kW)	\$/PCAF-kW-yr	\$/PCAF kW-yr
No.	Division	Zone	/1/	/1/	/2/	/2/	(E*G/F)	(D+H)
1	Central Coast	4	\$69.09	\$1.04	823,510	1,759,256	2.22	\$71.31
2	De Anza	4	\$35.65	\$1.01	741,675	1,234,311	1.68	\$37.33
3	Diablo	12	\$17.78	\$1.56	1,265,169	1,524,487	1.88	\$19.66
4	East Bay	3A	\$19.99	\$0.88	627,862	1,338,170	1.88	\$21.87
5	Fresno	13	\$39.52	\$1.36	2,164,629	3,575,125	2.25	\$41.77
6	Humboldt	1	\$73.97	\$1.12	292,803	736,437	2.82	\$76.79
7	Kern	13	\$34.07	\$1.23	1,585,454	2,449,767	1.90	\$35.97
8	Los Padres	5	\$56.49	\$1.06	492,381	1,041,742	2.24	\$58.73
9	Mission	3B	\$13.63	\$0.97	1,233,354	2,022,915	1.59	\$15.22
10	North Bay	2	\$29.42	\$1.75	647,540	1,283,383	3.47	\$32.89
11	North Valley	16	\$53.40	\$1.26	742,213	1,324,624	2.25	\$55.65
12	Peninsula	3A	\$31.79	\$1.06	766,475	1,436,434	1.99	\$33.78
13	Sacramento	11	\$40.91	\$1.22	970,943	1,589,591	2.00	\$42.91
14	San Francisco	3A	\$40.41	\$1.52	829,544	1,435,075	2.63	\$43.04
15	San Jose	4	\$40.12	\$1.16	1,369,868	2,130,431	1.80	\$41.92
16	Sierra	11	\$30.65	\$1.25	1,187,910	1,833,534	1.93	\$32.58
17	Sonoma	2	\$121.98	\$1.28	544,454	1,147,401	2.70	\$124.68
18	Stockton	12	\$33.36	\$1.34	1,207,506	2,114,747	2.35	\$35.71
19	Yosemite	13	\$60.18	\$1.56	1,090,280	2,098,437	3.00	\$63.18

/1/ From PG&E 2017 GRC Phase II, MCRev_GRC.xlsx. IN-Dist-Capacity MC tab

/2/ From PG&E 2017 GRC Phase II, MCRev_GRC.xlsx.OUT)PCAF-FLT Factors tab

- + From 2018 GRC Phase II proceeding
- + SCE also proposes the functionalization of its distribution marginal capacity costs into a peak component and a grid component.
- + We are not making a distinction between peak and grid distribution capacity costs for SCE in this ACC update.
- This is consistent with avoided distribution capacity costs that have been used for SCE in prior ACCs.

	SCE Distribution Marginal Capacity Costs (2018\$)
Subtransmission (\$/kW-yr)	\$40.00
Substation (\$/kW-yr)	\$25.00
Local Distribution (\$/kW-yr)	\$102.90
Total (\$/kW-yr)	\$167.90

+ SDG&E 2019 GRC Phase II

	SDG&E Marginal Capacity Cost (\$2016)
Substation (\$/kW-yr)	\$22.05
Local Distribution (\$/kW-yr)	\$77.97
Total	\$100.02

+ Annual Escalation Factors

PG&E	SCE	SDG&E
2.50%	2.33%	2.00%

+ Loss Factors

PG&E	SCE	SDG&E
1.048	1.022	1.043

- Annual capacity costs are allocated to hours of the year to allow the ACC to reflect the time varying need for capacity by using Peak Capacity Allocation Factors (PCAFs)
- + Each IOU provided a set of allocation factors that were converted to normalized, hourly probability distributions
- + Hourly PCAFs were then mapped to match the reference CTZ 22 Typical Meteorological Year using E3's daymapping routine

- In its 2020 GRC Phase II proceeding, PG&E provided PCAFs by distribution area as well as a novel modification to its methodology which includes the impact of exports in the PCAF calculations
- + While the concept of peak export hours has merit, the impact of exports on overall PCAF shapes were found to be negligibly small, and not included in the ACC for this cycle. In lieu of exports, E3 used the following formula to calculate normalized PCAF shapes, where h is each hour of the year

 $PCAF weight[h] = \frac{Delivered PCAF Load[h]}{\sum_{h=0}^{h=8760} Delivered PCAF Load[h]}$

- The ACC utilizes the Peak Load Risk Factor (PLRF) analysis done by SCE in its 2018 GRC Phase II proceeding as a basis to generate normalized PCAFs
- SCE provided counts of circuits exceeding their planning threshold value by Climate Zone, and Date. For example, on Hour 21 of August 8th, there were 44 circuits over the threshold value in CZ6
- + E3 then normalized each climate zone using the following formula, where h is defined as an hour of the year:

 $PCAF weight[h] = \frac{number of circuits over threshold [h]}{\sum_{h=0}^{h=8760} number of circuits over threshold [h]}$

Raw Data from SCE PLRF analysis

Climate Zone	Peak Date	Peak Hour	Number Of Circuits
5	6Dec2018	22	1
5	2Jan2018	20	1
5	15Aug2018	16	1
5	29Dec2018	7	1
6	8Aug2018	21	44
6	6Jul2018	18	44
6	6Jul2018	19	33
6	6Jul2018	21	25

Heatmap from SCE PLRF Analysis

 SDG&E provided distribution level power flow data by climate zone, but did not provide a PCAF calculation, so E3 calculated PCAFs using the methodology using the following formula from the prior ACC:

 $PCAF[a, h] = 1 + \frac{Load[a, h] - Threshold[a]}{\sum_{h=0}^{h=8760} |Load[a, h] - Threshold[a]|}$

- a is the climate zone area,
- h is hour of the year,
- Load is the net distribution load, and
- Threshold is the area maximum demand less one standard deviation, or the closest value that satisfies the constraint of between 20 and 250 hours with loads above the threshold.
- Note that the denominator is an absolute value

Raw Data from SDG&E

CECClimateZone	LOAD_DATE	LOAD_HOUR	MW
7	1/1/2017 0:00	0	1066.86
7	1/1/2017 0:00	1	1091.04
7	1/1/2017 0:00	2	1039.16
7	1/1/2017 0:00	3	1003.04
7	1/1/2017 0:00	4	982.58
7	1/1/2017 0:00	5	986.47

Hourly PCAF Distribution

- + E3's Day mapping Routine was used to map PCAFs from an IOU provided weather year to the CTZ 22 index year
- + The day mapping routine slotted each day of the year into season/workday "bucket" assigning each day a rank within each bucket based on its mean temperature
- For example, in the CTZ weather files shown to the right, 1/2/2020 was the 44th warmest winter workday
- For each bucket, the index date was matched to the corresponding (same-ranked) date in the IOU provided weather year

CTZ22 Temperature Metric Ranking (CZ4)

Index Date	Workday	Season	Rank
1/1/2020	0	Winter	10
1/2/2020	1	Winter	44
1/3/2020	1	Winter	59
1/4/2020	0	Winter	28
1/5/2020	0	Winter	27
1/6/2020	1	Winter	56
1/7/2020	1	Winter	16
1/8/2020	1	Winter	1
1/9/2020	1	Winter	13

Mapping Between Index and PG&E Data (CZ4)

Index Date	PG&E Weather Data	Classification	CTZ Rank	PG&E Rank
1/1/2020	2/18/2017	Winter Weekend	10	10
1/2/2020	12/7/2017	Winter Workday	44	44
1/3/2020	12/20/2017	Winter Workday	59	59
1/4/2020	1/28/2017	Winter Weekend	28	28
1/5/2020	12/17/2017	Winter Weekend	27	27
1/6/2020	2/23/2017	Winter Workday	56	56
1/7/2020	2/10/2017	Winter Workday	16	16
1/8/2020	2/8/2017	Winter Workday	1	1
1/9/2020	2/14/2017	Winter Workday	13	13

Transmission PCAFs

+ Transmission PCAFs were calculated using a three-step methodology

- 1. The E3 RECAP model uses 63 years of historical load and generation data to determine expected unserved energies (EUE) by month, hour, and weekday/ weekend
- 2. A load-weighted daily maximum statewide temperature is calculated and EUE values are allocated to all hours in days where the system average temperature exceeds 90 degrees F
- 3. EUE values are normalized into an 8760 profile, and day mapped to the CTZ22 temperature data and the 2020 calendar year for consistency with energy prices

 1

2020 EUE from RECAP

Generation Capacity Allocation Factors